Tissue-specific distributions of alternatively spliced human PECAM-1 isoforms.

نویسندگان

  • Yongji Wang
  • Xiaojing Su
  • Christine M Sorenson
  • Nader Sheibani
چکیده

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule that is highly expressed on the surface of endothelial cells and some hematopoietic cells. Its cytoplasmic domain is encoded by multiple exons, which undergo alternative splicing. Here, we demonstrate that the human PECAM-1 cytoplasmic domain undergoes alternative splicing, generating six different isoforms. RT-PCR cloning and DNA sequence analysis indicated that human tissue and endothelial cells express multiple isoforms of PECAM-1, including the full-length PECAM-1 and five other isoforms, which lack exon 12, 13, 14, or 15 or exons 14 and 15. The full-length PECAM-1 is the predominant isoform detected in human tissue and endothelial cells. This is in contrast to murine endothelium, in which the PECAM-1 isoform lacking exons 14 and 15 is the predominant isoform. The PECAM-1 isoform lacking exon 13 detected in human tissue and endothelial cells is absent in murine endothelium. The expression pattern of PECAM-1 isoforms changes during tube formation of endothelial cells on Matrigel, which may indicate specialized roles for specific isoforms of PECAM-1 during angiogenesis. The data presented here demonstrate that human PECAM-1 undergoes alternative splicing, generating multiple isoforms in vascular beds of various tissues. Therefore, the regulated expression of these isoforms may influence endothelial cell adhesive properties during angiogenesis and/or vasculogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression pattern of alternatively spliced PECAM-1 isoforms in retinal vasculature.

PURPOSE Platelet/endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion-signaling molecule with important roles in angiogenesis and inflammation. The alternative splicing of the PECAM-1 cytoplasmic domain modulates its adhesive properties during vascular development and angiogenesis. This study was designed to identify alternatively spliced PECAM-1 isoforms in human and murine retina...

متن کامل

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development.

The establishment of the cardiovascular system represents an early, critical event essential for normal embryonic development. An important component of vascular ontogeny is the differentiation and development of the endothelial and endocardial cell populations. This involves, at least in part, the expression and function of specific cell surface receptors required to mediate cell-cell and cell...

متن کامل

Tissue specific expression of alternatively spliced murine PECAM-1 isoforms.

PECAM-1 (CD31) is a cell adhesion molecule that is highly expressed at the sites of endothelial cell-cell contact and at lower levels on the surface of platelets and leukocytes. It is a member of the immunoglobulin gene superfamily and undergoes alternative splicing to generate several isoforms that differ only in their cytoplasmic domains. The tissue distribution of the expression of different...

متن کامل

An alternatively spliced isoform of PECAM-1 is expressed at high levels in human and murine tissues, and suggests a novel role for the C-terminus of PECAM-1 in cytoprotective signaling.

The Ig-ITIM family member PECAM-1 is expressed in vascular and endothelial cells, and its functions include suppression of mitochondria-dependent apoptosis. Previous studies have identified distinct PECAM-1 cytoplasmic domain splice variants at the mRNA, but not protein, level. Several relatively abundant mRNA isoforms lack exon 15 (Delta15) and would theoretically encode a protein with a trunc...

متن کامل

The distribution pattern of genetic variation in the transcript isoforms of the alternatively spliced protein-coding genes in the human genome.

By enabling the transcription of multiple isoforms from the same gene locus, alternative-splicing mechanisms greatly expand the diversity of the human transcriptome and proteome. Currently, the alternatively spliced transcripts from each protein-coding gene locus in the human genome can be classified as either principal or non-principal isoforms, providing that they differ with respect to cross...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 284 3  شماره 

صفحات  -

تاریخ انتشار 2003